Somatosensory loss increases vestibulospinal sensitivity.
نویسندگان
چکیده
To determine whether subjects with somatosensory loss show a compensatory increase in sensitivity to vestibular stimulation, we compared the amplitude of postural lean in response to four different intensities of bipolar galvanic stimulation in subjects with diabetic peripheral neuropathy (PNP) and age-matched control subjects. To determine whether healthy and neuropathic subjects show similar increases in sensitivity to galvanic vestibular stimulation when standing on unstable surfaces, both groups were exposed to galvanic stimulation while standing on a compliant foam surface. In these experiments, a 3-s pulse of galvanic current was administered to subjects standing with eyes closed and their heads turned toward one shoulder (anodal current on the forward mastoid). Anterior body tilt, as measured by center of foot pressure (CoP), increased proportionately with increasing galvanic vestibular stimulation intensity for all subjects. Subjects with peripheral neuropathy showed larger forward CoP displacement in response to galvanic stimulation than control subjects. The largest differences between neuropathy and control subjects were at the highest galvanic intensities, indicating an increased sensitivity to vestibular stimulation. Neuropathy subjects showed a larger increase in sensitivity to vestibular stimulation when standing on compliant foam than control subjects. The effect of galvanic stimulation was larger on the movement of the trunk segment in space than on the body's center of mass (CoM) angle, suggesting that the vestibular system acts to control trunk orientation rather than to control whole body posture. This study provides evidence for an increase in the sensitivity of the postural control system to vestibular stimulation when somatosensory information from the surface is disrupted either by peripheral neuropathy or by standing on an unstable surface. Simulations from a simple model of postural orientation incorporating feedback from the vestibular and somatosensory systems suggest that the increase in body lean in response to galvanic current in subjects with neuropathy could be reproduced only if central vestibular gain was increased when peripheral somatosensory gain was decreased. The larger effects of galvanic vestibular stimulation on the trunk than on the body's CoM suggest that the vestibular system may act to control postural orientation via control of the trunk in space.
منابع مشابه
Somatosensory influence on postural response to galvanic vestibular stimulation.
We investigated how postural responses to galvanic vestibular stimulation were affected by standing on a translating support surface and by somatosensory loss due to diabetic neuropathy. We tested the hypothesis that an unstable surface and somatosensory loss can result in an increase of vestibulospinal sensitivity. Bipolar galvanic vestibular stimulation was applied to subjects who were standi...
متن کاملSomatosensory evoked potentials sensitivity relative to electroencephalography for cerebral ischemia during carotid endarterectomy.
BACKGROUND AND PURPOSE The relation between electroencephalographic pattern changes and cerebral ischemia during carotid endarterectomy under general anesthesia is well established. Pattern changes seen on somatosensory evoked potentials under the same conditions are reported to be more sensitive indicators of cerebral ischemia. We estimated the sensitivity and specificity of somatosensory evok...
متن کاملCan somatosensory evoked potentials predict disease course in early multiple sclerosis patients?
BACKGROUND Multiple sclerosis (MS) is an autoimmune degenerating disease, where myelin degradation as well as axonal loss is present. PURPOSE To asses whether recording the middle-latency components of the median nerve somatosensory evoked potentials (SEPs) increases the diagnostic sensitivity in patients with MS, and to investigate whether any of the abnormalities correlates with the severit...
متن کاملLoss of Projections, Functional Compensation, and Residual Deficits in the Mammalian Vestibulospinal System of Hoxb1-Deficient Mice1,2,3
The genetic mechanisms underlying the developmental and functional specification of brainstem projection neurons are poorly understood. Here, we use transgenic mouse tools to investigate the role of the gene Hoxb1 in the developmental patterning of vestibular projection neurons, with particular focus on the lateral vestibulospinal tract (LVST). The LVST is the principal pathway that conveys ves...
متن کاملSpatial alignment of rotational and static tilt responses of vestibulospinal neurons in the cat.
The responses of vestibulospinal neurons to 0.5-Hz, whole-body rotations in three-dimensional space and static tilts of whole-body position were studied in decerebrate and alert cats. The neurons' spatial properties for earth-vertical rotations were characterized by maximum and minimum sensitivity vectors (R(max) and R(min)) in the cat's horizontal plane. The orientation of a neuron's R(max) wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 86 2 شماره
صفحات -
تاریخ انتشار 2001